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Abstract
We study a system of electrons moving on a noncommutative plane in
the presence of an external magnetic field which is perpendicular to this
plane. For generality we assume that the coordinates and the momenta are
both noncommutative. We make a transformation from the noncommutative
coordinates to a set of commuting coordinates and then we write the
Hamiltonian for this system. The energy spectrum and the expectation value of
the current can then be calculated and the Hall conductivity can be extracted.
We use the same method to calculate the phase shift for the Aharonov–Bohm
effect. Precession measurements could allow strong upper limits to be imposed
on the noncommutativity coordinate and momentum parameters � and �.

PACS numbers: 11.10.Nx, 73.43.−f

1. Introduction

Noncommutative theories arise in string theory [1, 2] and in the present search for quantum
gravity [3], while Yang–Mills theories on noncommutative spaces [4] appear in string theory
and M-theory. The noncommutative theories which are studied the most are the ones in which
it is assumed that coordinates do not commute with each other. For more generality we will
assume that the momenta are noncommutative as well. In the end if one wants to restrict these
results to the case where only the coordinates are noncommutative, one can set the parameter
that describes the noncommutativity of the momenta to zero.

We shall follow an approach [5] in which we will express the noncommutative coordinates
xi , pi as linear combinations of canonical variables of quantum mechanics αi , βi . We will see
that the noncommutativity will introduce additional terms in the Hamiltonian of the equivalent
commutative description.

In the present work we are calculating modifications to the quantum Hall effect and to
the Aharonov–Bohm effect in this noncommutative scenario. In the former effect an electric
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current flows through a conductor in a magnetic field which has a component perpendicular
to the plane of the electron’s trajectory. The magnetic field exerts a transverse force on the
electrons which tends to push them to one side of the conductor. This is most evident in a flat
and thin conductor where the magnetic field is perpendicular to the plane of the conductor.
Charge accumulates at the sides of the conductors producing a measurable voltage between
the two sides of the conductor. The case of charged particles in magnetic fields (the Landau
problem) was previously considered in the literature from prospectives which differ from the
one taken in the present work [6–11].

The Aharonov–Bohm effect emphasizes the fact that it is not the electric and magnetic
fields but the electromagnetic potentials which are the fundamental quantities in quantum
mechanics. In this effect a beam of electrons is split in two and the two beams follow two
different paths. An interference pattern is produced when the two different beams of electrons
recombine because there will be a phase shift between the two beams, and this phase shift
depends on the magnetic flux enclosed by the two alternative paths. This phase shift is
observed even if they pass through regions of space in which the magnetic field is null but the
vector potential is not zero. The noncommutative Aharonov–Bohm effect was studied using
the star product approach in [12, 13].

In section 2 we consider electrons which are moving on a noncommutative plane in the
presence of an electric field in this plane and an external magnetic field which is perpendicular
to the noncommutative plane. In the commutative case the experiment described above
leads to the Hall effect. Once again, for more generality we assume both the coordinates
(which now become operators) and momenta do not commute. We calculate corrections
due to noncommutativity to the Hall conductivity, and we will show that in the limit when
the parameters describing noncommutativity go to zero, we recover the commutative case. In
section 3 we calculate deviations due to noncommutativity to the phase shift for the Aharonov–
Bohm effect. Also here we will show that in the commutative limit we reproduce the usual
results. Section 4 contains the limits on the noncommutativity parameters which we obtain
from our analysis. In section 5 we discuss the results of our analysis.

2. Noncommutative quantum hall effect

2.1. Quantum mechanics on the noncommutative plane

An electron moving on the (x, y) plane in a uniform electric field �E = −�∇φ and a uniform
magnetic field B which is perpendicular to the plane is described by the Hamiltonian

H = 1

2m

(
�p +

e

c
�A
)2

− eφ, (1)

We will adopt the symmetric gauge (this gauge is well suited for the experiment described in
the previous section)

�A =
(

−B

2
y,

B

2
x

)
, (2)

and we will consider the scalar potential to be

φ = −Ex. (3)

If we substitute (2) and (3) into (1), we can write the Hamiltonian in the following form:

H( �p, �r) = 1

2m

[(
px − eB

2c
y

)2

+

(
py +

eB

2c
x

)2
]

+ eEx. (4)
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We want to calculate modifications to the Hall conductivity due to the effects of space
noncommutativity. For generality, we assume that the physical coordinate and momenta
operators satisfy the following commutation relations:

[x1, x2] = i�ij , (5)

[p1, p2] = ih̄2�ij , (6)

[xi, pj ] = ih̄δij , (7)

where �ij and �ij , i, j = 1, 2, are antisymmetric matrices characterizing the
noncommutativity of the phase-space geometry.

Following the same treatment as [5] we define linear transformations from the set
of noncommutative coordinates to a commutative set of canonically conjugate coordinates
(αi, βi) which satisfy

[αi, αj ] = 0, (8)

[βi, βj ] = 0, (9)

[αi, βj ] = ih̄δij . (10)

The relation between the two sets of coordinates is defined as follows:

xi = aijαj + bijβj (11)

pi = cijβj + dijαj , (12)

where a, b, c and d are in this case 2 × 2 transformation matrices. Relations (5)–(10) determine
the conditions which the transformation matrices must satisfy. In matrix form they are

abT − baT = Θ
h̄

(13)

cdT − dcT = −h̄Ξ (14)

caT − bdT = I, (15)

where a, b, c, d,Θ and Ξ are 2 × 2 antisymmetric matrices.
The transformation matrices are not unique (more details can be found in [5]), but a

convenient choice for our purposes during the calculations that follow is to keep matrices a
and c diagonal and single valued. In order to maintain the same number of free parameters,
matrices b and d are chosen to be antisymmetric

aij ≡ aδij , cij ≡ cδij (16)

bij ≡ bεij , dij ≡ dεij . (17)

Equations (13)–(15) become

ab = − �

2h̄
(18)

cd = h̄�

2
(19)
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ac − bd = 1, (20)

where a and c are dimensionless and b and d−1 have dimensions of length. We solve for three
parameters and we get

b = − �

2ah̄
(21)

c = 1

2a
(1 ± √

κ), κ ≡ 1 − �� (22)

d = h̄a

�
(1 ∓ √

κ). (23)

We see from equation (22) that there are two regions, one with κ � 0, and the other
region with κ < 0. For the region with κ � 0 we substitute (11), (12) and (21)–(23) into our
Hamiltonian (4), thus we can rewrite it in the following way:

H(�α, �β) = 1

2m

[
h2

1(αi)
2 + h2

2(βi)
2 − h3εijαiβj

]
+ aeEα1 − �

2ah̄
eEβ2, (24)

with

h2
1 = a2

[
h̄

�
(1 ∓ √

κ) −
(

eB

2c

)]2

(25)

h2
2 = �2

4h̄2a2

[
h̄

�
(1 ± √

κ) −
(

eB

2c

)]2

(26)

h3 = 1

h̄

[(
eB

2c

)2

� + h̄2� − h̄eB

c

]
. (27)

We make the following coordinate transformations:

β1 → β1 (28)

β2 → β2 − m�eE

2ah̄h2
2

, (29)

and the Hamiltonian takes the following form:

H(�α, �β) = 1

2m

[
h2

1 (αi)
2 + h2

2 (βi)
2 − h3εijαiβj

]
+ h4α1 − h5, (30)

where we have defined

h4 = ±2eEa
h̄
√

κ

�
[

h̄
�

(1 ± √
κ) − (

eB
2c

)] (31)

h5 = me2E2

2
[

h̄
�

(1 ± √
κ) − (

eB
2c

)]2 . (32)

To discuss the eigenvalue problem

Ĥ	 = E	, (33)

it is convenient to perform the change of variables [15]

ẑ = α1 + iα2, (34)
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p̂z = 1
2 (β1 − iβ2). (35)

We define two sets of creation and annihilation operators

b† = −2ih2p̂z̄ + h1ẑ + λ, b = 2ih2p̂z + h1 ˆ̄z + λ (36)

and

d† = −2ih2p̂z̄ − h1ẑ, d = 2ih2p̂z − h1 ˆ̄z, (37)

where λ = ∓meE
√

κ/2h3. These two sets of operators commute with each other and satisfy
the following commutation relations:

[b, b†] = 2mh̄ω (38)

[d†, d] = 2mh̄ω, (39)

with ω = −h3/m.
In terms of these operators the Hamiltonian is

Ĥ = 1

4m
(bb† + b†b) − λ

2m
(d† + d) − λ2

2m
− h5. (40)

We observe that the Hamiltonian in (40) is composed of two mutually commuting parts

Ĥ = Ĥ osc − Ĥ1. (41)

We will calculate the eigenvalues E and the eigenfunctions 	 of the two commuting parts
of the Hamiltonian separately. For the harmonic oscillator part

Ĥ osc = 1

4m
(bb† + b†b), (42)

the eigenvalue equation Ĥ osc�n = Eosc
n �n is easily solved and it leads to a discrete spectrum

�n = 1√
(2mh̄ω)nn!

(b†)n|0〉, (43)

Eosc
n = h̄ω

2
(2n + 1), n = 0, 1, 2, . . . . (44)

The eigenvalue equation for Ĥ1φγ = Eγ φγ can be analyzed in terms of eigenvalues of the
operators αi and βi . The eigenfunctions

φγ (α1, α2, µ) = exp

(
−i

(
γα2 + µα1 +

h1

h̄h2
α1α2

))
(45)

form a complete orthonormal set, with

〈φγ |φγ ′ 〉 = δ(γ − γ ′)δ(µ − µ′). (46)

The energy spectrum is continuous and it is labeled by γ

Eγ = h̄λh2

m
γ +

λ2

2m
+ h5, γ ∈ R. (47)

We now find the eigenfunctions of the Hamiltonian Ĥ

	(n,γ,µ,�,�) = �n ⊗ φγ = |n, γ, µ,�,�〉,
= 1√

(2mh̄ω)nn!
exp

(
−i

(
γα2 + µα1 +

h1

h̄h2
α1α2

))
(b†)n|0〉, (48)
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where ⊗ denotes the direct product, and the energy spectrum

E(n,γ ) = h̄ω

2
(2n + 1) − h̄λh2

m
γ − λ2

2m
− h5. (49)

We cannot rule out the region with κ < 0. This can occur when both � and � are
different from zero and � > 1/�. This condition gives rise to a new phase of the theory. For
this case we use a different choice for the transformation matrices. We still consider a and c
to be diagonal but this time of the form aij ≡ aiδij and cij ≡ ciδij respectively. With these
assumptions, using equation (15) we find that the diagonal elements of matrices b and d must
be zero. It was shown in [5] that a possible set of solutions for this case is

b12 = −a22 (50)

b21 = a11 (51)

d12 = c22 (52)

d21 = −c11, (53)

with

a2
11 = �

2

[
1 +

1√
1 + 4A2

]
(54)

a2
22 = �

2

[
1 − 1√

1 + 4A2

]
(55)

c11 = 1

�
(a11 + a22

√−κ) (56)

c22 = 1

�
(a22 − a11

√−κ) (57)

A ≡
√−κ

1 + κ + �2
. (58)

Using these transformations in equation (4), the Hamiltonian takes the following form:

H(�α, �β) = 1

2m

[
f 2

1

(
α2

1 + β2
1

)
+ f 2

2

(
α2

2 + β2
2

) − f3εijαiβj

]
+ eEa11α1 − eEa22β2 (59)

with the coefficients

f1 ≡ c22 − eB

2c
a22 (60)

f2 ≡ c11 − eB

2c
a11 (61)

f3 ≡ 2f1f2. (62)

After another coordinate transformation β2 → β2 − meEa22/f
2
2 ,H becomes

H(�α, �β) = 1

2m

[
f 2

1

(
α2

1 + β2
1

)
+ f 2

2

(
α2

2 + β2
2

) − f3εijαiβj

]
+ f4α1 − f5, (63)

where

f4 ≡
(

eEa11 − f1eEa22

f2

)
(64)
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f5 ≡ me2E2α2
22

2f 2
2

. (65)

As for the case with κ � 0 we can perform another change of variables and define two
sets of creation and annihilation operators

ẑ = f1α1 + if2α2 (66)

p̂z = 1
2 (f1β1 − if2β2) (67)

b† = −2ip̂z̄ + ẑ + λ, b = 2ip̂z + ˆ̄z + λ (68)

d† = −2ip̂z̄ − ẑ, d = 2ip̂z − ˆ̄z, (69)

with λ = mf4/2f1. The new operators ẑ and p̂z are defined in a different way than in
equations (34) and (35). The need for a different definition comes from the different way that
the harmonic oscillator part of the Hamiltonian for the two cases is written. The commutation
relations for the two sets of operators are

[b, b†] = 2mh̄ω (70)

[d†, d] = 2mh̄ω, (71)

where we have defined ω = (
f 2

1 + f 2
2

)/
m. We can write our Hamiltonian in terms of the new

operators in the same form as given in equation (40). From here on, the energy eigenvalues
and the eigenfunctions can be calculated in the same way as before.

It can be seen that for the whole range of the parameter κ , there is a convenient
transformation between the noncommutative coordinate and momentum operators and a set
of commuting ones. Also, one can calculate the energy spectrum and the eigenfunctions of
the Hamiltonian in terms of this set of commuting operators.

2.2. Hall effect

For the rest of the paper we will work considering the case for κ � 0. The Hall conductivity
can be calculated by means of the Hamiltonian Ĥ given above. We define the current operator
�̂J on the noncommutative plane as

�̂J = ieρ

h̄
[Ĥ , �̂r], (72)

where r̂ ≡ (x1, x2) is the physical coordinate operator.

The expectation values of the components of the current operator 〈 �̂J 〉 calculated with
respect to the eigenstates |n, γ, µ,�,�〉 are

〈Ĵx〉 = 0, (73)

〈Ĵy〉 = −eρ
1 − ��

B
c

− eB2�
4h̄c2 − h̄�

e

E. (74)

Therefore the Hall conductivity on the noncommutative plane, which we denote by σH , is

σH = −eρ
1 − ��

B
c

− eB2�
4h̄c2 − h̄�

e

. (75)

We note that if the noncommutativity parameters � and � are taken to be equal to zero, we
obtain the same value for the Hall conductivity as in the commutative case (σH = −ρec/B).
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Using equation (75) we can look at particular cases derived from our result. In the
noncommutative scenarios which are most commonly discussed in the literature, only the
coordinates are noncommutative, and the parameter � is equal to zero. In this case we obtain

σH = −eρ
1

B
c

− eB2�
4h̄c2

. (76)

Alternatively, we can imagine a noncommutative scenario in which coordinates commute but
momenta are noncommutative. In this case also we obtain modifications of the commutative
Hall effect due to the presence of the term proportional to �:

σH = −eρ
1

B
c

− h̄�
e

. (77)

From an experimental point of view, the last case that we consider might be much more
important. Our result predicts that if space and momenta are noncommutative, even without
the presence of an external magnetic field, the value of the Hall conductivity should be different
from zero

σH = e2ρ
1 − ��

h̄�
. (78)

In this case the sign of the conductivity is different. If the sensitivity of the experiments is
increased sufficiently, the effect might eventually be detected and it would be a clear signature
of noncommutativity. There is one situation in which the Hall conductivity is still zero in this
scenario, and that is if the two noncommutativity parameters � and � are naturally adjusted
such that one is the inverse of the other. In this case the numerator of (78) would be equal to
zero.

3. Noncommutative Aharonov–Bohm effect

We will use the same approach to study the Aharonov–Bohm effect in the noncommutative
plane. We start from a Hamiltonian similar to equation (1)

H = 1

2m

(
�p +

e

c
�A
)2

+ V, (79)

where e is the charge on an electron.
Using the same gauge as in (2), the Hamiltonian becomes

H( �p, �r) = 1

2m

[(
px − eB

2c
y

)2

+

(
py +

eB

2c
x

)2
]

+ V (�x). (80)

Following a similar derivation as in the previous part of the paper, we can rewrite H once
again in terms of αi and βi as

H(�α, �β) = 1

2m

[
h2

1 (αi)
2 + h2

2 (βi)
2 − h3εijαiβj

]
+ V (�α, �β), (81)

where the coefficients h1, h2 and h3 are the ones defined in (25), (26) and (27). We use the
fact that 2h1h2 = h3 and we rewrite the Hamiltonian once again as

H(�α, �β) = 1

2m

[(
h2 �β − h1 �α′

)2
]

+ V (�α, �β), (82)

where we have defined �β = (β1, β2) and �α′ = (−α2, α1).
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We now have to solve Schrodinger’s equation[
1

2m

(
h2

h̄

i
∇ − h1 �α′

)2

+ V (�α, �β)

]
	 = i

∂	

∂t
, (83)

where we substituted �β → h̄
i

(
∂

∂α1
, ∂

∂α2

) ≡ h̄
i
∇.

We write

	 = eigψ, (84)

where

g(�α) = h1

h2h̄

∫
C

�α′ · d�α (85)

is a closed path of arbitrary radius encircling the solenoid.
Then

∇	 = eig(i∇g)ψ + eig∇ψ (86)

but

∇αg = h1

h2h̄
�α′, (87)

and using this we have from equation (86)(
h2

h̄

i
∇ − h1 �α′

)
	 = h2

h̄

i
eig∇ψ. (88)

The first term in equation (83) becomes(
h2

h̄

i
∇ − h1 �α′

)2

	 = −h2
2h̄

2 eig∇2ψ. (89)

If we substitute (84) and (89) into (83) we can see that g(�α) is just a phase difference and
it will be equal to

g(�α) = h1

h2h̄

∫
C

�α′ · d�α

= h1

h2h̄

∫
C

(α2 dα1 − α1dα2)

= h1

h2h̄
2A, (90)

where A = πα2, with α =
√

α2
1 + α2

2, is the size of the area encircled by C.
Substituting the expressions for the constants h1 and h2 from (25) and (26) we have for

the phase shift

g(�α) = 2a2
[

h̄
�

(1 ∓ √
κ) − (

eB
2c

)]
�

[
h̄
�

(1 ± √
κ) − (

eB
2c

)] 2A. (91)

We note that if we take the noncommutativity parameters � and � to zero, only the
solution with the upper signs is physical

g(�α) = 2a2
[

h̄
�

(1 − √
κ) − (

eB
2c

)]
�

[
h̄
�

(1 +
√

κ) − (
eB
2c

)] 2A. (92)

Moreover, for � and � zero, setting the free parameter a to 1, gives the same phase shift as in
the commutative case −e�/h̄, where � is the magnetic flux.
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In the limit when � and � are small, we can expand g( �α) to the first order in both
parameters,

g(�α) =
(

−eB

ch̄
+ � − eB2�

4c2h̄2

)
A. (93)

Again if we consider the case for which only the coordinates are noncommutative but the
momenta commute with each other (� = 0), the phase shift becomes

g(�α) =
(

−eB

ch̄
− eB2�

4c2h̄2

)
A. (94)

Another scenario we can consider is the one for which the coordinates commute but the
momenta are noncommutative. In this case we again obtain modifications of the commutative
phase shift due to the presence of the term proportional to �:

g(�α) =
(

−eB

ch̄
+ �

)
A. (95)

For these cases (� = 0 or � = 0) that we studied, we observe that if the external magnetic
field can be adjusted with enough sensitivity, we should find a value of the magnetic field for
which the phase shift vanishes.

In the absence of an external magnetic field, again the phase shift is different from zero if
the coordinates or the coordinates and the momenta are noncommutative. To see this we look
back at equation (92) and we set the magnetic field to zero

g(�α) = 2a2(1 − √
κ)

�(1 +
√

κ)
2A. (96)

4. Experimental limits on Θ and Ξ

The Hall conductivity (76) can be measured with an accuracy of one part in a billion. We
can use this experimental limit to impose an upper limit of 10−34 m2 on the noncommutativity
parameter �. This limit on � is weaker by six orders of magnitude than the one imposed
by [16] using data from experiments which test Lorentz invariance. Also the authors of [17]
propose a stronger limit on theta by measuring differential cross sections for small angles in
scattering experiments. However, the latter experiment is very difficult to perform because it
requires the measurement of scattering angles between 1◦ and 2◦ at energies of the order of
200 GeV. We can also impose a limit on � using Aharonov–Bohm measurements, but this
limit is much weaker than the one that can be imposed using the Hall effect.

One of the advantages of our calculation is that we are able to consider the case when
momenta are noncommutative, and we can also impose limits on the magnitude of the
parameter which describes it. From the experiments which measure the Hall conductivity we
find that � must be smaller than 10−19 m−2. Also from (96) we can see that noncommutativity
of coordinates or momenta would induce a phase shift even in the absence of external magnetic
fields. If the coordinates are noncommutative and the phase shift could be measured with
enough accuracy, a phase shift would be detected even in the absence of a magnetic field.

5. Discussion

In this work we extended the formalism used in [5, 7] to study two-dimensional harmonic
oscillators that live in a noncommutative space to the study of the noncommutative Hall
effect and Aharonov–Bohm effect. The electrons in the low-temperature Hall effect and in
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the Aharonov–Bohm effect do not interact appreciably with other particles, thus allowing a
rather simple form for the Hamiltonian in each case. Although noncommutativity introduces
some complexity into the expressions for the Hamiltonians in these two effects, they are still
sufficiently simple that we were able to obtain wave vectors and energy eigenvalues or the
phase shifts in a closed form. This in turn allowed us to obtain expressions for the quantities
measured in each of these two effects plus the deviations from the commutative forms of the
quantities due to noncommutativity in an analytical form. Several interesting features arise
in the noncommutative forms of the quantum Hall effect and the Aharonov–Bohm effect. In
the former effect the deviation of the conductivity due to noncommutativity is independent of
the magnetic field to lowest order in the parameter � for � = 0. If the conductivity can be
measured with sufficient precision, a deviation from the normal (magnetic field dependent)
value would be circumstantial evidence for noncommutativity. In both the quantum Hall
effect and the Aharonov–Bohm effect deviations occur in the conductivity and phase shift
respectively even if there is no magnetic field.

The limits which the two effects studied in this work can set on the � noncommutative
parameter, while not as strong as the one set in [16], are nevertheless significant. The limit on
the � parameter which was obtained in this work is the first one we have seen. The results
reported on here suggest that high precision measurements in atomic and molecular systems
may be able to rival or even exceed the strongest limit set by nuclear systems [16]. For this
reason we are in the process of studying the Josephson effect using the method described
above.
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